
Yili Zheng

Lawrence Berkeley National Laboratory

Berkeley UPC Team

• Project Lead: Katherine Yelick

• Team members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

• Former members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala ,
Mike Welcome

• A joint project of LBNL and UC Berkeley

2Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Motivation

• Scalable systems have either distributed memory or
shared memory without cache coherency
– Clusters: Ethernet, Infiniband, CRAY XT, IBM BlueGene

– Hybrid nodes: CPU + GPU or other kinds of accelerators

– SoC: IBM Cell, Intel Single-chip Cloud Computer (SCC)

• Challenges of Message Passing programming models
– Difficult data partitioning for irregular applications

– Memory space starvation due to data replication

– Performance overheads from two-sided communication
semantics

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 3

Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private

segments for data placement optimizations
 Friendly to non-cache-coherent architectures

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

4Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

PGAS Example: Global Matrix
Distribution

Global Matrix View Distributed Matrix Storage

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

9

5

13

3

11

7

15

2

10

6

14

4

12

8

16

5Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication

• Synchronization: barriers, locks, memory
fences

• Collective communication library

• Parallel I/O library
6Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Key Components for Scalability

• One-sided communication and active
messages

• Efficient resource sharing for multi-core
systems

• Non-blocking collective communication

Workshop on Programming Environments for Emerging Parallel Systems 76/22/2010

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Driver and OS Libraries

Translated C code with Runtime Calls

H
ar

d
w

ar
e

D
ep

e
n

d
an

t Lan
gu

age D
ep

e
n

d
an

t

8Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Berkeley UPC Features

• Data transfer for complex data types (vector,
indexed, stride)

• Non-blocking memory copy

• Point-to-point synchronization

• Remote atomic operations

• Active Messages

• Extension to UPC collectives

• Portable timers

9Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

One-Sided vs. Two-Sided Messaging

• Two-sided messaging
– Message does not contain information about the final

destination; need to look it up on the target node
– Point-to-point synchronization implied with all transfers

• One-sided messaging
– Message contains information about the final destination
– Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU

10Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Active Messages

• Active messages = Data + Action

• Key enabling technology for both
one-sided and two-sided
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Spawn asynchronous tasks

Request

Reply

A B

Request
handler

Reply
handler

11Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Bandwidth on BlueGene/P

• Torus network
– Each node has six 850MB/s*

bidirectional links

– Vary number of links from 1 to 6

• Consecutive non-blocking puts
on the links (round-robin)

• Similar bandwidth for large-size
messages

• GASNet outperforms MPI for
mid-size messages
– Lower software overhead

– More overlapping

* Kumar et. al showed the maximum
achievable bandwidth for DCMF
transfers is 748 MB/s per link so we
use this as our peak bandwidth
See “The deep computing messaging
framework: generalized scalable
message passing on the blue gene/P
supercomputer”, Kumar et al. ICS08

G
O
O
D

See “Scaling Communication Intensive Applications on
BlueGene/P Using One-Sided Communication and
Overlap”, Rajesh Nishtala, Paul Hargrove, Dan Bonachea,
and Katherine Yelick, IPDPS 2009

12Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Bandwidth on Cray XT4

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
a

n
d

w
id

th
 o

f
N

o
n

-B
lo

c
k

in
g

 P
u

t
(M

B
/s

)

portals-conduit Put

OSU MPI BW test

mpi-conduit Put

(u
p

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

13Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Latency on Cray XT4

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

L
a
te

n
c
y
 o

f
B

lo
c
k
in

g
 P

u
t

(µ
s
)

mpi-conduit Put

MPI Ping-Ack

portals-conduit Put

(d
o

w
n

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

14Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Execution Models on Multi-core
– Process vs. Thread

CPU CPU CPU CPU

Physical Shared-memory Virtual Address Space

Map UPC threads to Processes Map UPC threads to Pthreads

15Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Point-to-Point Performance
– Process vs. Thread

Workshop on Programming Environments for Emerging Parallel Systems 16

0

1000

2000

3000

4000

5000

6000

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

B
an

d
w

id
th

 (M
B

/s
)

Size (Bytes)

InfiniBand Bandwidth

1T-16P 2T-8P 4T-4P 8T-2P 16T-1P MPI

6/22/2010

Application Performance
– Process vs. Thread

Workshop on Programming Environments for Emerging Parallel Systems 17

0

0.2

0.4

0.6

0.8

1

1.2

GUPS MCOP SOBEL

Fine Grained Comm.

1T-16P 2T-8P 4T-4P 8T-2P 1T-16P

6/22/2010

16T-1P

NAS Parallel Benchmarks
– Process vs. Thread

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

EP CG IS MG FT LU BT-256 SP-256

NPB - Class C
Comm

Fence

Critical Section

Comp

18Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Collective Communication for PGAS

• Communication patterns similar to MPI:
broadcast, reduce, gather, scatter and alltoall

• Global address space enables one-sided
collectives

• Flexible synchronization modes provide more
communication and computation overlapping
opportunities

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 19

Collective Communication Topologies

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15 binomial tree

0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15

Binary Tree

Fork Tree

0

2

34

6

17

5

Radix 2 Dissemination

20Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Module Organization

GASNet Collectives API

Portable
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory
Collectives

21Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Auto-tuning Collective Communication

Workshop on Programming Environments for Emerging Parallel Systems 22

Offline tuning

 Optimize for platform
common characteristics

 Minimize runtime
tuning overhead

Online tuning

 Optimize for application
runtime characteristics

 Refine offline tuning
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution
 Process/thread

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get
 Collection of well-

known algorithms
Communication topology

 Tree type
 Tree fan-out

Implementation-specific
parameters

 Pipelining depth
 Dissemination radix

6/22/2010

Broadcast Performance

Cray XT4 Nonblocking Broadcast (1024 Cores)

23Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Matrix-Multiplication on Cray XT4

Workshop on Programming Environments for Emerging Parallel Systems 24

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
Fl

o
p

s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

6/22/2010

Choleskey Factorization on Sun
Constellation (Infiniband)

3118

3757

4097

0 1000 2000 3000 4000 5000

Naïve UPC
(get-based)

Hand-coded
UPC

UPC team
collectives

GFlops

2048 cores on Ranger
Matrix size: 240K

25Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

FFT Performance on Cray XT4

(1024 Cores)

26Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

FFT Performance on BlueGene/P

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 27

MPI FFT of HPC Challenge as of July 09 is ~4.5 Tflops on 128k Cores.

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

o
p

s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

Summary

• PGAS provides programming convenience similar to
shared-memory models

• UPC has demonstrated good performance comparable
to MPI at large scale.

• Interoperable with other programming models and
languages including MPI, FORTRAN and C++

• Growing UPC community with actively developed and
maintained software implementations
– Berkeley UPC and GASNet: http://upc.lbl.gov

– Other UPC compilers: Cray UPC, GNU UPC, HP UPC and
IBM UPC

– Tools: TotalView and Parallel Performance Wizard (PPW)

28Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

